Abstract Book of ISESER 2018

P 7. THEORETICAL INVESTIGATIONS ON STATIC FIRST HYPERPOLARIZABILITIES OF N,N'-DIBENZYLIDENE-4-BROMOBENZENE-1,2-DIAMINE

Ziya Erdem Koc¹, Mustafa Karakaya², Yusuf Ceylan³, Nuretdin Eren³, Mehmet Taser³, Aysun Gozutok³, Asli Karakas³

¹Selcuk University, Faculty of Sciences, Department of Chemistry, Campus, Konya, Turkey ²Department of Energy Systems, Faculty of Engineering & Architecture, Sinop University, Sinop 57000, Turkey

³Selcuk University, Faculty of Sciences, Department of Physics, Campus, Konya, Turkey

E-mail: mkarakayafizik@hotmail.com, akarakas@selcuk.edu.tr

ABSTRACT: To investigate second-order nonlinear optical (NLO) phenomena of N,N'-dibenzylidene-4-bromobenzene-1,2-diamine, the electric dipole moment and static second-order hyperpolarizability values have been calculated by means of Finite Field (FF) procedure. The basic structure of the title material is based on the π -bond system, due to the overlap of π -orbital delocalization of electronic charge distribution leads to a high mobility of the electron density. The computation results with non-zero values on first hyperpolarizability indicate that the examined compound might possess microscopic second-order NLO behaviour.

Keywords: Second-order Optical Nonlinearity, Electric Dipole Moment, Finite Field, π *-bond system, First Hyperpolarizability.*